These are the course notes to accompany the UCSD Extension class: Embedded Controller Programming 1: *Assembly Language Programming*

FIRST send e-mail listing any e-mail addresses you would like to have class notices sent to:
- ecp1@hte.com

NEXT send an e-mail message to subscribe to the class discussion group by sending a message to: ucsdecp-request@luisa.hte.com with subject = subscribe

The class e-mail will consist of updates between meetings, Q&A, important notices, and interaction with the instructor and other students between classes.

Course web site: http://www.hte.com/uconline/ecp

Ken Arnold ecp1@hte.com
phone 858-679-1569 or 679-4821 (office)
phone 858-335-9361 (mobile)
fax 858-679-7569
HiTech
14260 Garden Road, Suite 2A
Poway, CA 92064-4972
Welcome to class!

- ECP 1 and 2 Course Overview
- Instructor & Student Introductions
- Processor Architecture
- Basic Instruction Set
- Introduction to the SDK
- Homework #1

Overview - ECP 1

- uC Architecture and Programming
- Assembly Language Programming
- 8051 Memory Model and Memory Usage
- 8051 Instruction Set
- 8051 Hardware Features
- Other Topics
Overview - ECP 2

- Focus on Applications
- Learning to use C for uC Programming
- Adapting C to the uC environment
- Focusing on Modular Programming
- Handling Basic Peripherals
 - Displays
 - Switches/Keypads
 - Motors/Controls
- Student Projects!

Administrative Stuff

- Fill Out Student Forms Please!
- Send e-mail to ecp1@hte.com
- Course Format, Policy
 - Lecture, Demo, Homework, Project
- Class Web Page:
 - http://www.hte.com/uconline/ecp
- Grading
 - 4 Homework Problems - Due Week after Assigned!
 - Programming Project, Comprehensive Final Exam
 - Be Here So We Can Start (and Finish) On Time!
Course Objectives

- Microcontroller vs. Desktop PC
- Familiarity with Hardware
- Familiarity with Tools
- Hands-on Exposure Required
- Low Level Programming, Interfacing
- Microcontroller Applications
- Polite, Invisible computing!

Course Format

- In-class:
 - Lecture and demonstrations
 - 3 hours * 6 meetings
 - Please Ask Questions!!

- Outside of Class:
 - Software Development Kit (SDK),
 - Development Setup:
 - SDK, Prototyping, and Test Equipment
Resources

- Software Tools
 - Assembler
- Hardware
 - SDK, Prototyping Board, Components
- Support Web Sites
 - http://www.hte.com/uconline
- General Information

The Toaster Fable

- The King Wants a New Toaster
 - The Pragmatic Solution
 - The Politically Correct Solution
 - The King Resolves the Conflict
- Moral:
 - CS emphasizes most general solution
 - EE emphasizes minimizing complexity
Instructor

- Father of 5, age 6 to 24
 - Preemptive Multi-tasking, Dynamic Priorities!
- Wireless Innovation
 - Product Development and Manufacturing
- UCSD Extended Studies
 - Embedded Certificate Programs

Student Introduction

- Your Name and Background

- What Do You Do?
 - (i.e. - EE at XYZ Corp., etc..)

- What Do You Want to Get out of This Class?
What Is a Microcontroller?

- What Are They?
- How Are They Used?
- Basic Features
- Sizes
- Families
- uC’s vs uP’s, DSP’s, PLD’s

µ Controller vs. µProcessor

- µC Chip Includes:
 - Central Processor
 - Program Memory
 - Data Memory
 - I/O
 - Highly Integrated
 - Low Cost
 - Specialized Architectures

- µP Chip Includes:
 - Central Processor
 - Separate Chips for:
 - Central Processor
 - Program Memory
 - Data Memory
 - I/O
 - Highest Performance
 - Highest Cost!
Von Neumann Architecture

- Single Memory for:
 - Programs
 - Data
- Familiar
- Most Flexible
- Used in PCs
- Speed Bottleneck:
 - Memory Interface

Harvard Architecture

- Separate Memory for:
 - Programs
 - Data
- Advantages:
 - Faster
 - Overlap Transfers
 - Instruction Fetch
 - Data Transfer
 - Can't execute Data!
Bus Oriented Microcomputer

Microcontroller Functions

Microprocessor Functions

CPU Memory I/O

Peripheral Devices

The Real World

One Chip Microcontrollers

Advantages:
- Fewer chips required
- Lower cost and smaller
- Lower power
- Fewer connections
- More user I/O pins
- Reliability is higher
- K.I.S.S.!

Disadvantages:
- Reduced flexibility
- Expansion is limited
- Limited performance
- Limited I/O
- Design compromised to fit everything on one chip
In order to get into details, we must look into a specific processor architecture. What criteria were used to decide which architecture to use for this course?

- A real device, in common use
- Availability from multiple manufacturers
- Free and very low cost development tools available for student use
The 8051 Microcontroller

- The most widely used microcontroller
- Multiple sources, hundreds of variants
- Free software development tools
 - Assembler
 - Simulator
 - C Compilers
- Low cost hardware components and tools

The 8051 Family

- Originally Designed by Intel
- Introduced in 1980
- PCs Shipped in the Millions per Year
- Billions of 8051s shipped in one year
 - 1B Sold just by one of the many manufacturers
- New Variants Come out All the Time
- Other Microcontrollers Ship in Billions/Year
Partial List of 8051 Vendors

- Intel
 - The Original 8051
 - The 80251 Family
- Philips
 - 8051 Family Variants
 - The 8051XA Family
- Atmel
 - 20 Pin 89Cxx51 Family
 - 8051 Family Variants
- Dallas Semiconductor
 - High Speed Versions
 - Non Volatile SRAM
- Analog Devices, Cygnal
- Temic, ISSI, Matra, OKI, Siemens, SMC, SSI - and Many Others Too !!!
- IP Cores for ASICs
 - Synopsis
 - Mentor

Embedded Memory

- Semiconductor Storage
- Implications of Storage Technology
 - Matching Technology to Application
 - Read-Write, Read-Only, Read-Mostly
- Non-ideal Memory Characteristics
 - Asymmetrical Read, Write
Memory Volatility

- **Volatile:**
 - Loses contents when power is removed
 - Used for temporary storage of changing values:
 - Variables
 - Stacks

- **Non-Volatile:**
 - Retains contents after power loss
 - Used for permanent storage of:
 - Programs
 - Constants
 - Look-up Tables

8051 Memory Architecture

- Separate Memory Address Spaces for:
 - Programs - Non-volatile
 - Internal ROM
 - External EPROM
 - Data - Volatile
 - External SRAM
 - Internal RAM
 - General Purpose Registers
 - Bit Addressable Registers
 - Special Function Registers
8051 Instruction Set

- Instructions:
 - Data Transfer
 - Arithmetic
 - Logical
 - Control
- Address Modes
 - Immediate
 - Direct
 - Indirect
- Examples:
 - MOV A, 90h
 - ADD A, #30h
 - ANL A, #0FEh
 - CALL subroutine
- Examples:
 - MOV A, #30h
 - MOV A, 30h
 - MOV A, @R0

8xC52 Program Memory

- On-chip Code Memory
 - Non-volatile
 - Different types:
 - 80C52 = Mask ROM
 - 87C52 = EPROM
 - 89C52 = Flash EPROM
- External Code Memory
 - Design Dependent
 - SDK has EPROM & SRAM

Reset vector: 0000
Program Memory Usage

- Processor execution
 - Begins at location 0000h
 - (The “Reset Vector”)
 - Continues with next instruction
- 8x52 has 8K bytes of Internal Code Memory on-chip
- 8x32 has NO code space on chip
- When Processor fetches external instructions, /PSEN pulses low

SDK Program Memory Map

- ROM: 0000-3FFFFh
 - Monitor Program
- RAM: 4000-
 - User Program/XData
 - 4000-BDFFh
 - User Programs and Data
 - Monitor Data
 - Reserved: BE00-BFFFFh
 - DO NOT Modify!
 - Temporary Storage
Data Memory

- External SRAM
 - External chip
 - Typically SRAM
- Internal RAM
 - General Purpose Registers
 - Bit Addressable Registers
 - Special Function Registers

Data Memory Addresses

- External Data 0000-FFFFh
- Internal Data 00-FFh
 - General Purpose 00-7Fh
 - G.P. Register Banks
 - Bit Addressable
 - General Purpose “Scratch Pad”
 - Indirect Access 80-FFh
 - Use MOV @R0 or @R1
 - SFRs Direct 80-FFh
 - Overlapped addresses
 - Direct address MOV 00-FFh
 - Special Internal Registers
Internal Data Memory

- Registers R0..7
 - 8 registers per bank
 - 4 Banks available
- Bit Addressable
- General Purpose
- Special Function Registers (SFRs)
 - Accumulator, I/O
 - Timers, misc. registers

Bit Addressable Memory

- Internal Data Memory
 - Byte Addresses 20-2Fh
 - Bit Addresses 00-7Fh
- Allows individual bit operations:
 - MOV bits to/from Carry
 - SETB sets a bit to 1
 - CLR clears a bit to 0
 - JB conditional jump
8051 Instruction Set

- Instructions:
 - Data Transfer
 - Arithmetic
 - Logical
 - Control

- Address Modes
 - Immediate
 - Direct
 - Indirect

Examples:
- MOV A, 90h
- ADD A, #30h
- ANL A, #0FEh
- CALL subroutine

Examples:
- MOV A, #30h
- MOV A, 30h
- MOV A, @R0

Simple 8051 Block Diagram
Development Tools

Software
- Translators
 - Assemblers
 - Compilers
- Linkers
- Debug Monitor
 - SDK Monitor ROM
- Performance Analyzers
 - Find Execution Bottlenecks

Hardware
- In-Circuit Emulators
 - Substitutes for CPU chip
 - Allows seeing “inside” uC
- Logic Analyzer
 - View Timing and Bus Cycles
- Logic Probe
- Oscilloscope
- Lights and Bepers

Hardware Handling Issues

Precautions Regarding:
- Take Precautions against ESD
- Avoid Touching Contacts: Metal Oxidation
- Power = heat and smoke

But Don’t Be Afraid!!
- SDKs are easy to fix and connect to probes
- Sockets for all ICs, and are easily replaced
- Unlike surface mounted components!
Introduction to the SDK

- Software Development Kit Connections
 - Power, Serial Port, ICE Cable
 - SDK Users manual: sdk31man.pdf
 - SDK Schematic: sdk31sch.pdf
- PC Setup, Software Setup
- Common Problems

PC Software for SDK

- Hyperterminal, MTTY, or Procomm
 - Terminal Emulator to connect to SDK
 - Command line monitor ROM on SDK
- asm51 8051 Cross assembler translates
 - Input, 8051 source: *.asm
 - Output, Intel Hex object format: *.hex
 - and listing file: *.lst
SDK Introduction

- Demonstrate System Setup
- Introduce SDK Operation
- Code Development Cycle
- Download and Test

SDK - Top View
Demonstration of SDK

- Connecting the SDK
- Editing “Hello World” program
- Assembling program
- Downloading Hex file to SDK
- Running the modified SDK program

SDK Power Connection
Summary

- Introduction
- Microcontroller Architecture
- Memory
- Instruction Set Intro
- Development Tools
- SDK Intro

Homework Assignment

- Setup SDK and Software
- Modify “Hello World” Program
 - Change output string to Hello <your name>
 - Optional: Try other changes...
 - Increment Port 1 Outputs
 - Blink an LED!
 - Echo characters
 - Play!!!
References

- SDK User's Manual
- Arnold, “Embedded Controller Hardware Design”
- Ayala, “The 8051 Microcontroller”
- Cook, "A First Course in Digital Electronics"
- Foster, “Real Time Programming”
- Horowitz & Hill, “The Art of Electronics”
- Wakerly, “Digital Design”
- Schultz, “C and the 8051” vol I and II